
WEOI Editorials

Blanca Huergo Muñoz

Scientific committee
Andrea Ciprietti (Italian Olympiads in Informatics)

Blanca Huergo Muñoz (Spanish Informatics Olympiad)

Félix Moreno Peñarrubia (Spanish Informatics Olympiad)

Hugo Peyraud-Magnin (France-IOI)

Jelmer Firet (Dutch Informatics Olympiad)

Luca Versari (Italian Olympiads in Informatics)

Omer Giménez (Google)

Simon Mauras (France-IOI)

Suneet Mahajan (Irish Informatics Olympiad)

Technical committee

Jacobo Vilella Vilahur (Spanish Informatics Olympiad)

Luca Versari (Italian Olympiads in Informatics)

WEOI 2023
Eindhoven, June 17th, 2023 turbulences • EN

Plane Turbulences (turbulences)
Problem author: Blanca Huergo Muñoz

Problem preparator: Félix Moreno Peñarrubia

Brianair, a reputed airline, is conducting a study about turbulences. They are working to find the optimal
stabilising system for their aircraft. This is to be in place during all the flight except landing and take-off,
that is, the part of the flight where the plane is supposed to fly in a straight line.

A stabilising system of tolerance x will ensure that the plane does not deviate from its desired altitude
(the one it would have if it were flying in a straight line at constant altitude) by an absolute difference
higher than x. It is possible to know in advance the altitude of the plane at each minute of the trip if
we do not equip it with a stabilising system. You will be given all these height deviation predictions
A0, . . . , AN−1 for the duration of the trip N , in chronological order.

The following example shows how a stabilising system of tolerance 2 takes a flight with deviation pre-
dictions A0 = 0, A1 = 3, A2 = 4, A3 = 5, A4 = −1, A5 = −2, A6 = −3 to a flight with actual deviations
B0 = 0, B1 = 2, B2 = 2, B3 = 2, B4 = −1, B5 = −2, B6 = −2.

Altitudes before and after applying a stabilising system with tolerance 2.

Brianair knows that customers love high-flying travels, so the customer satisfaction (i.e. the airline’s gain
from implementing the system) after flying on a plane with a stabilising system of tolerance x equals∑N−1

i=0 Bi, where Bi is the stabilised altitude at time i. That is, Bi = sign(Ai) · min(|Ai|, x).

But the cost of bribing regulators to allow a system with tolerance x equals Kx, where K is some nonneg-
ative constant. The airline therefore wants to maximise its revenue from the flight, i.e.

(∑N−1
i=0 Bi

)
−Kx.

Given K and A0, . . . , AN−1, would you be able to find the maximum revenue that can be attained by
setting the optimal tolerance x ≥ 0?

Implementation
You will have to submit a single .cpp source file.

turbulences Page 2 of 31

☞ Among this task’s attachments you will find a template turbulences.cpp with a sample
implementation.

You have to implement the following function:

C++ long long revenue(int N, int K, vector<long long> A);

• Integer N represents the duration of the flight.
• Integer K represents the cost coefficient.
• The array A, indexed from 0 to N − 1, contains the values A0, A1, . . . , AN−1, where Ai is the

predicted altitude at time i.
• The function should return the maximum revenue that can be obtained.

The grader will call the function revenue and will print its return value to the output file.

Sample Grader
The task’s directory contains a simplified version of the jury grader, which you can use to test your
solution locally. The simplified grader reads the input data from stdin, calls the functions that you must
implement, and finally writes the output to stdout.

The input is made up of 2 lines, containing:

• Line 1: the integers N and K.
• Line 2: the integers Ai, separated by spaces.

The output is made up of a single line, containing the value returned by the function revenue.

Constraints
• 1 ≤ N ≤ 2 × 105.
• 0 ≤ K ≤ 2 × 105.
• −1012 ≤ Ai ≤ 1012.

Scoring
Your program will be tested on a set of test cases grouped by subtask. To obtain the score associated to
a subtask, you need to correctly solve all the test cases it contains.

• Subtask 1 [0 points]: Sample test cases.
• Subtask 2 [15 points]: N = 1.
• Subtask 3 [30 points]: N ≤ 102, K ≤ 102, −102 ≤ Ai ≤ 102 for each i = 0, . . . , N − 1.
• Subtask 4 [17 points]: All Ai are equal.
• Subtask 5 [18 points]: All Ai are nonnegative.
• Subtask 6 [20 points]: No additional constraints.

turbulences Page 3 of 31

Examples
stdin stdout

7 1
0 3 4 5 -1 -2 -3

1

5 1
7 8 -2 5 -10

3

5 0
1000000000000 1000000000000

1000000000000 1000000000000
1000000000000

5000000000000

Explanation
In the first sample case, the situation is as described in the picture above. The optimal revenue is
obtained with x = 5.

In the second sample case, the optimal revenue can be obtained by setting x = 5. Therefore, the total
revenue is (5 + 5 + −2 + 5 + −5) − 1 · 5 = 3.

In the third sample case, the optimal revenue can be obtained by setting any x ≥ 1012.

turbulences Page 4 of 31

Solution
Note that, as was done in the problem statement, we assume sign : Z → {−1, 0, 1} to be defined as
sign(x) = 1 for x > 0, sign(x) = −1 for x < 0 and sign(0) = 0.

[Subtask 1 has been omitted since it just comprises the sample cases.]

Subtask 2: N = 1.

Letting z = A[0], the constraint in this subtask reduces the problem to finding maxx≥0 f(z; x, K) =
sign(z) min(x, |z|) − Kx.

When z = 0, f(z; x, K) = −Kx for all x ≥ 0. Hence, since K ≥ 0, this will be maximised when x = 0,
with corresponding revenue f(0; 0, K) = 0.

Now, when z > 0, f(z; x, K) = min(x, z) − Kx. Now, this means that when x ≤ z, f(z; x, K) = x − Kx,
whereas f(z; x, K) = z − Kx otherwise. Hence, this function will either be maximised at x = 0 or x = z,
with revenue equal to max(f(z; 0, K), f(z; z, K)) = max(0, z − Kz).

Finally, when z < 0, f(z; x, K) = − min(x, −z) − Kx, that is, f(z; x, K) will be the sum of two non-
negative terms. Therefore, it will be maximised by picking x = 0, which will make both terms equal to
0, with revenue therefore equal to 0.

Subtask 3: N ≤ 100, K ≤ 100, −100 ≤ Ai ≤ 100 for each i = 0, . . . , N − 1.

Let g(x; K) = ∑N
i=1 sign(Ai) min(x, |Ai|) − Kx.

Observe that if M = maxi |Ai|, picking x ≥ M yields:

g(x; K) =
N∑

i=1
sign(Ai) min(x, |Ai|) − Kx

=
N∑

i=1
Ai − Kx

=
N∑

i=1
sign(Ai) min(M, |Ai|) − Kx

≤
N∑

i=1
sign(Ai) min(M, |Ai|) − KM

= g(M ; K)

Hence, we have that it is enough to check in the range 0 ≤ x ≤ maxi |Ai|. For this subtask, it suffices to
try all values of x in this range and naïvely calculate f for each value of x by iterating over all indices of
A.

Subtask 4: All Ai are equal.

In a similar fashion to how we approached Subtask 2, letting z = A[0], the constraint in this subtask
reduces the problem to finding the (natural) value of x that maximises h(z; x, K) = N ·sign(z) min(x, |z|)−
Kx = 1

N (sign(z) min(x, |z|) − KNx) = 1
N f(z; x, KN).

But then it suffices to use our solution for Subtask 2 with KN in the place of K, remembering to divide
the result by N before returning.

Subtask 5: All Ai are non-negative.

This subtask will give us the key insight needed to solve the general problem. We know from the analysis
of Subtask 3 that we only need to consider values of x between 0 and M = maxi |Ai|. But M can equal
1012, which is much larger than the number of values we can consider before reaching the time limit.

However, n, the length of A, will not exceed 2 · 105, a much more manageable number. Define the list C

turbulences Page 5 of 31

as C = (c1, . . . , cm), where c1 < · · · < cm and every entry of C is either 0 or an entry of A (and both 0
and all entries of A are entries of C). By definition of C, note that m ≤ N + 1.

We can in fact observe that an optimal value of x must be an entry of C.

Proof:

For a contradiction, suppose otherwise. That is, all optimal values of x are not entries of C. Since we
have already shown that at least one optimal value of x lies between 0 (which is c1) and M (which is
cm), then at least one optimal value of x lies between entries of C.

Take an optimal value b of x that lies between two entries of C: ∃j s.t. cj < b < cj+1. We hence have
that:

g(cj ; K), g(cj+1; K) < g(b; K)

However, for all i, we have that if cj < |Ai|, then b < |Ai| too (in which case min(b, |Ai|) = b and
min(cj , |Ai|) = cj), whereas if cj > |Ai|, then b > |Ai| (in which case min(b, |Ai|) = min(cj , |Ai|) = |Ai|).

We therefore have that ∑N
i=1 sign(Ai) min(x, |Ai|) is a linear function between cj and cj+1 and, since

−Kx is also clearly linear in this interval, it follows that g(x; K) is a linear function between cj and cj+1,
contradicting the fact that g(cj ; K), g(cj+1; K) < g(b; K). □

We have now shown that it an optimal value of x lies in C. It therefore suffices to calculate g(cj ; K) for
all j from 1 to m to find the maximal revenue. However, a naïve calculation of the revenue for each entry
of C still yields a TLE verdict. Note now that, for any j:

g(cj ; K) =
N∑

i=1
sign(Ai) min(cj , |Ai|) − Kcj

= sum(cj) + cj · gt(cj) − cj · lt(cj) − Kcj

= sum(cj) + cj(gt(cj) − lt(cj) − cj)

where sum(cj) is the sum of all the Ai’s where |Ai| ≤ cj , gt(cj) is the number of indices of A such that
Ai > cj and lt(cj) is the number of indices of A such that Ai < −cj .

Therefore, we can solve this subtask by sorting A in terms of the |Ai|’s and calculating the revenue for
the values of x in increasing order (that is, from x = c1 to x = cm). We can do this by keeping track of
the values of sum(x), gt(x) and lt(x) as we loop through A.

The simplest way to do this is probably to first loop backwards over the sorted array A and calculate for
each index i, how many of A[i], . . . , A[N − 1] are positive entries. Once this has been done, we can then
loop forwards over A, keeping track of the values of sum(x) and calculating gt(x) and lt(x) based on the
number of positive entries that follow the current index.

The complexity of this solution is hence O(N log N), which is dominated by the sorting of A, since then
the calculation over the sorted array actually takes place in O(N).

Subtask 6: No additional constraints.

The solution to Subtask 6 can be coded almost identically to that of Subtask 5. It only requires one
extra observation: we define the list D in the same way as C was defined in the explanation above, with
the difference that for all negative entries of A, the absolute value instead of the actual value is taken
when inserted into D. This way, D = (d1, . . . , dm), where d1 < · · · < dm and every entry of D is either 0
or the absolute value of an entry of A (and both 0 and the absolute value of all entries of A are an entry
of D). Note again that by definition of D, m ≤ N + 1.

By a symmetrical argument to the one in the analysis of Subtask 5, we can conclude that an optimal
value of x will be an entry of D. Hence, by substituting each entry of A with its absolute value to define
D instead of C (note that the actual entry of A should be used to calculate the values of sum(x)), we
can practically reuse the solution to Subtask 5 to obtain an AC verdict.

turbulences Page 6 of 31

[Spoiler alert: the following page contains C++ code for a 100 points solution.]

turbulences Page 7 of 31

Accepted Solution

1 #include <algorithm>
2 #include <vector>
3 using namespace std;
4 typedef long long int ll;
5

6 long long revenue(int N, int K, vector<long long> A) {
7 // we first sort A by absolute value
8 sort(A.begin(), A.end(), [](ll i, ll j) { return abs(i) < abs(j); });
9

10 ll highestRevenue = 0ll; // with x = 0, the revenue is always 0
11 // we now skip over the zeros in A:
12 size_t i = 0;
13 while (i < A.size() && A[i] == 0) {
14 i++;
15 }
16

17 // in order to calculate count_gt and count_lt it will be useful to know, for
18 // each index of A, how many positive entries follow it (including, if it is
19 // positive, itself).
20 int positives[N];
21 positives[N - 1] = A[N - 1] > 0;
22 for (int j = N - 2; j >= 0; j--) {
23 positives[j] = positives[j + 1] + (A[j] > 0);
24 }
25

26 ll x;
27 ll sum = 0ll;
28 int count_gt, count_lt, cnt_current;
29 while (i < A.size()) {
30 // we count how many entries of A have the absolute value of A[i] and use
31 // this to update sum(|A[i]|), count_gt(|A[i]|) and count_lt(|A[i]|)
32 cnt_current = 1;
33 sum += A[i];
34 while (i + 1 < A.size() && abs(A[i + 1]) == abs(A[i])) {
35 i++;
36 cnt_current++;
37 sum += A[i];
38 }
39 count_gt = positives[i] - (A[i] > 0);
40 count_lt = N - i - 1 - count_gt;
41 // it now just suffices to calculate the new revenue and compare with the
42 // current max
43 x = abs(A[i]);
44 highestRevenue = max(highestRevenue, sum + x * (count_gt - count_lt - K));
45 i++;
46 }
47 return highestRevenue;
48 }

turbulences Page 8 of 31

WEOI 2023
Eindhoven, June 17th, 2023 cost • EN

Political cost (cost)
Problem author: Hugo Peyraud-Magnin

Problem preparator: Omer Giménez

In the city where you live there are N streets going East-to-West (from 0th Street to (N − 1)th Street)
and M avenues going North-to-South (from 0th Avenue to (M − 1)th Avenue). Every street or avenue
has a political weight, which is the importance of the most important citizen living in it. We represent
political weights as two arrays A[0 . . . N −1] and B[0 . . . M −1] of integers from 1 to K. The following plot
represents such a city with 2 streets and 3 avenues, with political weights of A = [1, 4] and B = [2, 1, 4]
respectively.

1

4

2 1 4

The major wants to organize a parade through the city. If the parade goes through the intersection of xth
Street with yth Avenue, the traffic of both roads will be disrupted, and the major will incur a political cost
of max(A[x], B[y]). If the parade crosses goes through multiple intersections, the political cost will be
the maximum of the political cost of each intersection. Notice that costs are not summed: what matters
is not how many people the parade bothers, but how important is the most important citizen the parade
bothers.

The political distance between two intersections is the smallest political cost of a parade departing from
the first intersection and arriving at the second intersection. Your job is to compute the sum of the
political distances between all pairs of intersections in the city.

Implementation
You will have to submit a single .cpp source file.

☞ Among this task’s attachments you will find a template cost.cpp with a sample implemen-
tation.

You have to implement the following function:

C++ int solve(int N, int M, int K, vector<int> A, vector<int> B);

• Integer N represents the number of East-to-West streets.
• Integer M represents the number of North-to-South avenues.
• The array A, indexed from 0 to N − 1, contains the values A0, A1, . . . , AN−1, where Ai is the

political weight of the i-th East-to-West street.
• The array B, indexed from 0 to M − 1, contains the values B0, B1, . . . , BN−1, where Bi is the

political weight of the i-th North-to-South street.
• The function should return the sum of the political distances between all possible pairs of intersec-

tions, modulo 1000003.

The grader will call the function solve and will print its return value to the output file.

cost Page 9 of 31

Sample Grader
The task’s directory contains a simplified version of the jury grader, which you can use to test your
solution locally. The simplified grader reads the input data from stdin, calls the functions that you must
implement, and finally writes the output to stdout.

The input is made up of 3 lines, containing:

• Line 1: the integers N , M and K.
• Line 2: the integers Ai, space-separated.
• Line 3: the integers Bi, space-separated.

The output is made up of a single line, containing the value returned by the function solve.

Constraints
• 1 ≤ N ≤ 3 × 105.
• 1 ≤ M ≤ 3 × 105.
• 1 ≤ K ≤ N + M .
• 1 ≤ Ai ≤ K for i = 0 . . . N − 1.
• 1 ≤ Bi ≤ K for i = 0 . . . M − 1.

Scoring
Your program will be tested on a set of test cases grouped by subtask. To obtain the score associated to
a subtask, you need to correctly solve all the test cases it contains.

• Subtask 1 [0 points]: Sample test cases.
• Subtask 2 [10 points]: N ≤ 101, M ≤ 101.
• Subtask 3 [10 points]: N ≤ 102, M ≤ 102.
• Subtask 4 [10 points]: N = 1, M ≤ 104.
• Subtask 5 [10 points]: N = 1, M ≤ 105.
• Subtask 6 [10 points]: N ≤ 103, M ≤ 103.
• Subtask 7 [10 points]: N ≤ 104, M ≤ 104.
• Subtask 8 [10 points]: N ≤ 105, M ≤ 105 and the arrays A and B are non-decreasing, that is,

if i < j, then Ai ≤ Aj and Bi ≤ Bj .
• Subtask 9 [10 points]: N ≤ 105, M ≤ 105, K ≤ 101.
• Subtask 10[10 points]: N ≤ 105, M ≤ 105.
• Subtask 11[10 points]: No additional constraints.

cost Page 10 of 31

Examples
stdin stdout

2 2 4
3 3
3 3

48

1 3 4
2
2 3 1

25

2 3 5
1 4
2 1 4

135

Explanation
In the first sample case, we have a city with 2 streets and 2 avenues, all of them of political weight 3:

3

3

3 3

There are 16 different pairs of intersections. Since the political distance between each pair of intersections
is 3, the solution is 3 · 16 = 48.

In the second sample case there is 1 street and 3 avenues, with political weights A = [2] and B = [2, 3, 1]
respectively:

2

2 3 1

There are 9 pairs of intesections. Three of these pairs start and end at the same intersection, and have
political distances of 2, 3 and 2 respectively (the rightmost avenue has a political weight of 1, but the
political weight of the only street is 2, so the political distance of any parade is at least 2). For each
remaining pair of intersections, the parade joining them must cross the middle avenue, and hence must
have political distance of 3. So the total sum is 2 + 3 + 2 + 6 · 3 = 25.

The third sample case corresponds to the example given in the statement of the problem. Here, there
are 2 streets and 3 avenues. You can check, with some patience, that the sum of the political distances
of the 36 pairs of intersections is 135.

cost Page 11 of 31

Solution
Note that here, as was done in the presentation of the solutions at the end of the contest, I use the word
“road” as a generic term for both avenues and streets.

Take some k ≤ K and consider the number of pairs of intersections pk that have a political cost of at
most k. The number of such pairs of intersections will be the number of pairs of intersections in the map
obtained by removing all streets and avenues with a weight greater than k from the original map, since
these will be the roads that can be traversed in a path of cost ≤ k between any pair of intersections.

Now, let qk equal the number of pairs of intersections that have a cost of exactly k. We can see that
qk = pk − pk−1 for 0 ≤ k ≤ K, letting p−1 = 0 for simplicity of notation. The answer to the original
problem is ∑K

k=0 kqk (all modulo 1000003).

In order to understand the relationship between pk−1 and pk, it will be helpful to draw the maps that
are generated in the process. Take the following example:

We first make a simple observation: if there are no roads of weight k, then pk = pk−1 and qk−1 = 0.
Suppose otherwise.

The key to solving this problem in a way that is simple and efficient to implement is to observe that
it is not necessary to calculate qk itself, but we can instead remove from the map with weights ≤ k all
roads of weight k one by one, adding to the total cost all pairs of intersections of cost k that cease to
exist after this removal, multiplying this number by k. This works because if we count all these pairs of
intersections we are removing, the total is qk.

It now remains to understand the effect of removing a road in the total of pairs of intersections. We carry
out two steps as preprocessing. We first apply the monotonic stack technique twice to A to calculate
the following: for each index i, the largest j such that j < i and Aj ≤ Ai (letting j = −1 if no such
j exists) and the smallest h such that i < h and Ai < Ah (letting h = N if no such h exists). We do
the same to B. Let idxLeftA, idxLeftB, idxRightA and idxRightB represent these mappings. Then,
we sort the avenues and streets (separately) in descending order of weight. In the case where two roads
have the same weight, pick the one with the smaller index first. The use of structs or a similar idea is
recommendable, since this allows us to also store the corresponding initial index inside A or B of each
road.

Suppose we are now at a point where our current map is the original map with all roads of weight
> k removed, for some k ≤ K. We then remove the streets with weight k from bottom to top and
subsequently remove the avenues with weight k from left to right, i.e. in the order of the indices of A
and B respectively. We can iterate over the roads in this order easily, since we will have already sorted
A and B so that the roads of weight k appear together as a block, sorted by index.

When we reach a street of weight k in this processing, we have already removed all streets of weight k
below it, whereas all streets of weight k above it are still there. Therefore, the pairs of intersections formed
by an intersection below the current street and an intersection on the current street with a political cost
k will have already been counted if and only if the bottom intersection was in a street of weight k. Hence,
it suffices to remove the pairs of intersections formed by an intersection on the current street (let its index
be i) and an intersection on streets in indices [idxLeftA(i) + 1, idxRightA(i) − 1], both on avenues that

cost Page 12 of 31

have not yet been removed. The reason for this upper bound on the interval is that all streets of weight
> k will have been removed already, so streets from idxRightA(i) onwards will be unreachable from street
i. Hence, the removal of street i incurs the removal of si = 2(i − idxLeftA(i))(idxRightA(i) − i) − 1 pairs
of streets in the current map and therefore si · a (where a is the current number of avenues) intersections
of weight k. We therefore add k · si · a to the total. Note that since we know that in the original map the
number of pairs of streets is N2 and that of avenues is M2, from these two numbers we can calculate the
rest.

A symmetrical analysis of the removal of avenues yields the full solution. The cost of this solution is
O(N log N + M log M), dominated by the sorting of both streets and avenues.

[Spoiler alert: the following page contains C++ code for a 100 points solution.]

cost Page 13 of 31

Accepted Solution

1 #include <algorithm>
2 #include <stack>
3 #include <vector>
4 using namespace std;
5 typedef long long int ll;
6

7 ll mod = 1000003;
8

9 struct road {
10 int weight, index;
11 road() {}
12 road(int w, int i) {
13 weight = w;
14 index = i;
15 }
16 bool operator<(const road &other) const {
17 if (weight != other.weight)
18 return weight > other.weight;
19 return index < other.index;
20 }
21 };
22

23 // Uses monotonic stack technique to find, for each index i of A,
24 // the largest index j such that j < i and A[j] > i
25 vector<int> leftGeq(vector<int> &A) {
26 vector<int> indices(A.size());
27 indices[0] = -1;
28 stack<int> S;
29 S.push(0);
30 for (int i = 1; i < (int)A.size(); i++) {
31 while (S.size() && A[S.top()] < A[i]) {
32 S.pop();
33 }
34 if (S.size()) {
35 indices[i] = S.top();
36 } else {
37 indices[i] = -1;
38 }
39 S.push(i);
40 }
41 return indices;
42 }
43

44 // Uses monotonic stack technique to find, for each index i of A,
45 // the smallest index j such that j > i and A[j] >= i
46 vector<int> rightGeq(vector<int> &A) {
47 vector<int> indices(A.size());
48 int N = (int)A.size();
49 indices[N - 1] = N;
50 stack<int> S;
51 S.push(N - 1);
52 for (int i = N - 2; i >= 0; i--) {

cost Page 14 of 31

53 while (S.size() && A[S.top()] <= A[i]) {
54 S.pop();
55 }
56 if (S.size()) {
57 indices[i] = S.top();
58 } else {
59 indices[i] = N;
60 }
61 S.push(i);
62 }
63 return indices;
64 }
65

66 vector<road> createRoadsSet(vector<int> &C) {
67 vector<road> roads(C.size());
68 for (int i = 0; i < (int)C.size(); i++) {
69 roads[i] = road(C[i], i);
70 }
71 sort(roads.begin(), roads.end());
72 return roads;
73 }
74

75 void update(ll left, ll right, ll k, ll &result, ll &pairsCurDir,
76 ll pairsOtherDir) {
77 ll pairsToRemove = (((left * right * 2) % mod) + mod - 1) % mod;
78 ll pairsInterRemoved = (pairsToRemove * pairsOtherDir) % mod;
79 k %= mod;
80 result += (pairsInterRemoved * k) % mod;
81 result %= mod;
82 pairsCurDir = (pairsCurDir - pairsToRemove + mod) % mod;
83 }
84

85 int solve(int N, int M, int K, vector<int> A, vector<int> B) {
86 // Preprocessing step 1: monotonic stacks
87 vector<int> leftBoundsStreets = leftGeq(A);
88 vector<int> leftBoundsAvenues = leftGeq(B);
89 vector<int> rightBoundsStreets = rightGeq(A);
90 vector<int> rightBoundsAvenues = rightGeq(B);
91 // Preprocessing step 2: sort roads
92 vector<road> streets = createRoadsSet(A);
93 vector<road> avenues = createRoadsSet(B);
94

95 ll pairsStreets = ((ll)N * (ll)N) % mod;
96 ll pairsAvenues = ((ll)M * (ll)M) % mod;
97 ll result = 0;
98 K = max(streets[0].weight, avenues[0].weight);
99

100 int left, right, idx;
101 int streetsIt = 0, avenuesIt = 0;
102 for (int k = K; k > 0; k--) {
103 // remove all streets of weight k
104 while (streetsIt < N) {
105 if (streets[streetsIt].weight != k)
106 break;

cost Page 15 of 31

107 idx = streets[streetsIt].index;
108 left = idx - leftBoundsStreets[idx];
109 right = rightBoundsStreets[idx] - idx;
110 update(left, right, k, result, pairsStreets, pairsAvenues);
111 streetsIt++;
112 }
113

114 // remove all avenues of weight k
115 while (avenuesIt < M) {
116 if (avenues[avenuesIt].weight != k)
117 break;
118 idx = avenues[avenuesIt].index;
119 left = idx - leftBoundsAvenues[idx];
120 right = rightBoundsAvenues[idx] - idx;
121 update(left, right, k, result, pairsAvenues, pairsStreets);
122 avenuesIt++;
123 }
124 }
125 return result;
126 }

cost Page 16 of 31

WEOI 2023
Eindhoven, June 17th, 2023 tour • EN

Shop Tour (tour)
Problem author: Félix Moreno Peñarrubia

Problem preparator: Félix Moreno Peñarrubia

In Lineland there are N cookie shops in a row, numbered from 0 to N − 1. Baq wants to do a shop
tour through the shops. A shop tour is determined by N distinct integers P0, . . . , PN−1 between 0 and
N − 1.

For a given shop tour, Baq will start at shop P0. For each i = 0, . . . , N − 1, Baq will move from shop
Pi to shop Pi+1 (here we say PN = P0) buying one cookie from each of the shops between Pi and Pi+1,
inclusive. Formally, if Li = min(Pi, Pi+1) and Ri = max(Pi, Pi+1), then in the i-th step Baq will buy one
cookie from each of the shops Li, Li + 1, . . . , Ri.

Baq now has the numbers A0, . . . , AN−1, where Ai denotes the total number of cookies bought in the
i-th shop, but does not remember the shop tour. Your task is to determine if the information in the array
A is consistent with a valid shop tour, and if it is, construct such a valid tour. Additionally, in order to
obtain a full score (see the scoring section for details) the tour you construct must be the lexicographically
smallest such tour.

We say that a tour P0, . . . , PN−1 is lexicographically smaller than a different tour Q0, . . . , QN−1 if there
exists a 0 ≤ k ≤ N − 1 such that:

• Pi = Qi for all 0 ≤ i < k.

• Pk < Qk.

A tour Q is the lexicographically smallest among those consistent with the information in the array A if
there does not exist a different tour P with the same array A of bought cookies in each store which is
lexicographically smaller than Q.

Implementation
You will have to submit a single .cpp source file.

☞ Among this task’s attachments you will find a template tour.cpp with a sample implemen-
tation.

You have to implement the following function:

C++ variant<bool, vector<int>> find_tour(int N, vector<int> A);

• Integer N represents the number of shops.
• The array A, indexed from 0 to N − 1, contains the values A0, A1, . . . , AN−1, where Ai is the

number of cookies bought at the i-th store.
• The function should return either a boolean or an array of integers.

– If no valid shop tour exists which corresponds to the array A, the function should return
false.

– If a valid shop tour exists, you have multiple options:

tour Page 17 of 31

∗ To be awarded the full score, the procedure should return an array of N integers
P0, . . . , PN−1 representing the lexicographically smallest shop tour resulting in the
array A.

∗ To be awarded a partial score, the procedure should return an array of N integers
P0, . . . , PN−1 representing any not-lexicographically-smallest shop tour resulting in the
array A.

∗ To be awarded a smaller partial score, the procedure should return true or any array of
integers not describing a valid shop tour resulting in the array A.

The grader will call the function tour and will print the following to the output file:

• If the return value is false, it will print a single line with the string NO.

• If the return value is true or an array of integers of length not equal to N , it will print a single line
with the string YES.

• If the return value is an array P of N integers, it will print a single line with the string YES, followed
by a line with the N integers P0, . . . , PN−1 separated by spaces.

Sample Grader
The task’s directory contains a simplified version of the jury grader, which you can use to test your
solution locally. The simplified grader reads the input data from stdin, calls the functions that you must
implement, and finally writes the output to stdout.

The input is made up of two lines, containing:

• Line 1: the integer N .
• Line 2: the integers Ai, separated by spaces.

The output is made up of one or two lines, containing the values returned by the function tour.

Constraints
• 2 ≤ N ≤ 106.
• 0 ≤ Ai ≤ 106.

Scoring
Your program will be tested on a set of test cases grouped by subtask. The score associated to a subtask
will be the minimum of the scores obtained in each of the test cases.

• Subtask 1 [0 points]: Sample test cases.
• Subtask 2 [8 points]: N ≤ 8.
• Subtask 3 [32 points]: N ≤ 2 × 103.
• Subtask 4 [16 points]: Ai ≤ 4 for all i = 0, . . . , N − 1.
• Subtask 5 [20 points]: There exists a 0 ≤ j ≤ N − 1 such that Ai ≤ Ai+1 for all 0 ≤ i < j and

Ai ≥ Ai+1 for all j ≤ i ≤ N − 2.
• Subtask 6 [24 points]: No additional constraints.

For each test case in which a valid shop tour exists, your solution:

• gets full points if it returns the lexicographically smallest valid shop tour.

tour Page 18 of 31

• gets 75% of the points if it returns a valid shop tour which is not the lexicographically smallest one.

• gets 50% of the points if it returns true or an array that does not describe a valid shop tour.

• gets 0 points otherwise.

For each test case in which a valid shop tour does not exist, your solution:

• gets full points if it returns false.

• gets 0 points otherwise.

Examples
stdin stdout

4
2 4 4 2

YES
0 2 1 3

3
2 2 2

NO

Explanation
In the first sample case, the tour P = [0, 2, 1, 3] generates the array A = [2, 4, 4, 2] as follows:

• Initially, the number of cookies bought from each shop is [0, 0, 0, 0].

• Baq moves from shop P0 = 0 to shop P1 = 2, so the array after this move is [1, 1, 1, 0].

• Baq moves from shop P1 = 2 to shop P2 = 1, so the array after this move is [1, 2, 2, 0].

• Baq moves from shop P2 = 1 to shop P3 = 3, so the array after this move is [1, 3, 3, 1].

• Finally, Baq moves from shop P3 = 3 to shop P0 = 0, so the final array is [2, 4, 4, 2].

It can be shown that [0, 2, 1, 3] is the lexicographically smallest such tour.

In the second sample case, it can be shown that there does not exist a valid tour resulting in the array
A = [2, 2, 2].

tour Page 19 of 31

Solution
To start with, we can think about the tour (P0, . . . , PN−1) (letting PN = P0, as was done in the problem
statement, for simplicity of notation) as a list of intervals: [min(P0, P1), max(P0, P1)], [min(P1, P2),
max(P1, P2)], . . . , [min(PN−1, PN), max(PN−1, PN)]. Note that each point in P0, . . . , PN−1 is an endpoint
of exactly two intervals. We can imagine these intervals all drawn on top of each other over a number
line, with some overlaps. This “number line" intuition will help us understand the problem better.

Let f : {0, . . . , N − 1} → {0, . . . , N − 1} map each cookie shop number to its index in the permutation
P . That is, f(i) = Pj ⇐⇒ Pj = i. This is clearly well-defined.

By definition, Ai is equal to the number of intervals that include f(i) in them, that is, the number of
indices 0 ≤ j ≤ N − 1 where min(Pj , Pj+1) ≤ f(i) ≤ max(Pj , Pj+1).

Note that, since at least intervals j − 1 (or N when j = 0) and j contain the integer Pj , then Ai ≥ 2 for
all i or there is no solution. We can now assume therefore that Ai ≥ 2 for all 0 ≤ i ̸= N − 1.

Now, observe that the only way for shop 0 to be included in an interval is for it to be the left endpoint.
Hence, if A0 ̸= 2 no valid permutation exists. Assume now that A0 = 2. Note that by a symmetric
argument, we can conclude that AN−1 = 2 or no valid permutation exists.

Extending this logic further, we observe that since for all shops along the line, exactly two intervals have
the shop as an endpoint, shops can be divided into three categories:

1. The shop is the left endpoint of both intervals that have it as an endpoint.

2. The shop is the right endpoint of both intervals that have it as an endpoint.

3. The shop is the left endpoint of one of the intervals that has it as an endpoint and the right endpoint
of the other.

By iterating over A0, . . . , AN−1, we can keep track of which intervals are currently open, that is, that we
have found their left interval but not the corresponding right interval. This information will allow us to
categorise each shop, which will be the key information we need to construct the required tour.

From above, we have that A0 = 2 and hence that shop 0 is the left endpoint of 2 intervals, which we now
store as open.

Suppose that we reach some Ai, with i ≥ 1, and k intervals that are currently open. If shop i is in
category 1, then it is left endpoint of two intervals that have not been opened yet and is hence not the
right endpoint of any of the open intervals. Thus we have that Ai = k + 2. If this is the case, we then
update shop i’s category and increment the number of open intervals by 2.

If shop i is in category 2, then it is the right endpoint of two of the open intervals and is not the left
endpoint of any new interval. Therefore, Ai = k. If this is the case, we then update shop i’s category
and decrement the number of open intervals by 2.

If shop i is in category 3, it is the right endpoint of one of the open intervals and the left endpoint of
an interval that has not been opened yet. Hence, Ai = k + 1 and, if this is the case, we update shop i’s
category and leave the number of open intervals as is.

Finally, if Ai has any other value, no valid permutation exists, since we have already gone over all three
shop categories.

Also, we must remember to check on each iteration of the loop over A that the number of open intervals
is non-negative.

Once we have recorded the category of all N shops, we have to ensure that all open intervals have been
closed.

It now simply remains to try to construct a valid permutation that respects this (note that having found
these categories does not imply that a solution exists, as we will soon see) and is the lexicographically

tour Page 20 of 31

smallest. This second iteration over A could be merged with the first and both steps done at once, but
the explanation is a bit cleaner when split into two steps and the code still yields AC.

Since we are searching for the smallest lexicographically valid tour and these tours have a cyclic definition,
we can trivially let P0 = 0. We now fill in the rest of the indices of P greedily. Essentially, the idea
behind this algorithm is to iterate over the indices 1 to N − 2 and, whenever it does not lead to a wrong
tour, append the current index to the tour. This idea abstractly makes sense, since it will always be more
convenient to append the current index than a future, larger index to the tour. And how do we carry
out these wrong tour checks?

We keep a queue where we store the indices of category 1 shops that have not yet been added to the
queue, sorted by their index from smallest to largest. It suffices to use a standard queue instead of a
heap/priority queue since this is already the order in which we are visiting the indices. When we visit
index 1, this queue is empty, since shop 0 was already appended to the tour.

Whenever we reach an index with its shop being in category 2, we first check to make sure that Q is not
empty and, otherwise, conclude that no valid permutation exists. Essentially, we are ensuring that our
tour does not at any point close any intervals that it has not yet opened. After this check, we can safely
append it to the tour and follow this with dequeueing the index at the front of Q and appending this to
the tour too.

Also, whenever we reach an index with its shop being in category 1, we enqueue it to Q, where it will
wait for the next index in category 2 to be dequeued and added to the tour.

Finally, whenever we reach an index with its shop being in category 3, we append it to the tour but do
not touch Q, since the number of open intervals is unaffected by it.

Once we have iterated over all indices from 1 to N − 2, the queue will have been emptied and P will
have length N − 1. Shop N − 1 will close the last open intervals and we can return the tour obtained by
appending it to P .

[Spoiler alert: the following page contains C++ code for a 100 points solution.]

tour Page 21 of 31

Accepted Solution

1 #include <queue>
2 #include <variant>
3 #include <vector>
4 using namespace std;
5

6 variant<bool, vector<int>> find_tour(int N, vector<int> A) {
7 // Easy check to save us time:
8 if (A[0] != 2 || A[N - 1] != 2) {
9 return false;

10 }
11

12 // Let us first find the category of each shop
13 // Endpoints category notation: 0 = both left, 1 = mix, 2 = both right
14 vector<int> shopCategory(N);
15 shopCategory[0] = 0;
16 int openIntervals = 2;
17 for (int i = 1; i < N; i++) {
18 if (A[i] - openIntervals == 2) {
19 shopCategory[i] = 0;
20 openIntervals += 2;
21 } else if (A[i] - openIntervals == 1) {
22 shopCategory[i] = 1;
23 } else if (A[i] - openIntervals == 0) {
24 shopCategory[i] = 2;
25 openIntervals -= 2;
26 } else {
27 return false;
28 }
29 if (openIntervals < 0)
30 return false;
31 }
32 if (openIntervals != 0)
33 return false;
34

35 // Let us now construct the tour
36 vector<int> shopTour;
37 shopTour.push_back(0);
38 queue<int> Q;
39 for (int i = 1; i < N - 1; i++) {
40 if (shopCategory[i] == 0) {
41 Q.push(i);
42 } else if (shopCategory[i] == 1) {
43 shopTour.push_back(i);
44 } else {
45 shopTour.push_back(i);
46 if (Q.empty())
47 return false;
48 shopTour.push_back(Q.front());
49 Q.pop();
50 }
51 }
52 shopTour.push_back(N - 1);

tour Page 22 of 31

53 return shopTour;
54 }

tour Page 23 of 31

WEOI 2023
Eindhoven, June 17th, 2023 numbering • EN

Numbering (numbering)
Problem author: Andrea Ciprietti

Problem preparator: Suneet Mahajan

Given a forest on N nodes, a numbering of it is an assigment of positive integers to each edge of the
forest. A numbering is beautiful if, for every node, its edges have the numbers 1, 2, . . . , d in some order
(where d is the degree of the node).

You are given N positive integers A0, . . . , AN−1. Determine if there exists a forest on N nodes such that:

• for every 0 ≤ i ≤ N − 1, the degree of the node i is Ai;
• it admits at least one beautiful numbering.

Additionally, if there exists a such a forest, construct an example.

Implementation
You will have to submit a single .cpp source file.

☞ Among this task’s attachments you will find a template numbering.cpp with a sample imple-
mentation.

You have to implement the following function:

C++ variant<bool, vector<pair<int, int>>> find_numbering(int N, vector<int>
A);

• Integer N represents the number of nodes.
• The array A, indexed from 0 to N − 1, contains the values A0, A1, . . . , AN−1, where Ai is the

degree of the i-th node.
• The function should return either a boolean or an array of pairs of integers.

– If no valid (satisfying the conditions of the statement) forest exists, the function should return
false.

– If a valid forest exists, you have two options:
∗ To be awarded the full score, the procedure should return an array of pairs of integers,

representing the edges of a valid forest.
∗ To be awarded a partial score, the procedure should return true or any array of integers

not describing a valid forest.

The grader will call the function find_numbering and will print the following to the output file:

• If the return value is false, it will print a single line with the string NO.

• If the return value is true, it will print a single line with the string YES.

• If the return value is an array of pairs of integers of length M , it will print a line with the string
YES, followed by one line with M , followed by M lines with the pairs of the array.

numbering Page 24 of 31

Sample Grader
The task’s directory contains a simplified version of the jury grader, which you can use to test your
solution locally. The simplified grader reads the input data from stdin, calls the functions that you must
implement, and finally writes the output to stdout.

The input is made up of 2 lines, containing:

• Line 1: the integer N .
• Line 2: A0, A1, . . . , AN−1.

The output is made up of multiple lines, containing the values returned by the function find_numbering.

Constraints
• 2 ≤ N ≤ 105.
• 0 ≤ Ai ≤ N − 1.

Scoring
Your program will be tested on a set of test cases grouped by subtask. The score associated to a subtask
will be the minimum of the scores obtained in each of the test cases.

• Subtask 1 [0 points]: Sample test cases.
• Subtask 2 [16 points]: Ai ≤ 2.
• Subtask 3 [12 points]: Ai ≤ 3.
• Subtask 4 [16 points]: Let count(i) be the number of occurrences of i in A. You are guaranteed

that count(i) ≥ count(i + 1) + count(i + 2) + . . . for all 1 ≤ i ≤ N − 1.
• Subtask 5 [10 points]: N ≤ 12.
• Subtask 6 [24 points]: N ≤ 500.
• Subtask 7 [22 points]: No additional constraints.

For each test case in which a valid forest exists, your solution:

• gets full points if it returns a valid forest.

• gets 50% of the points if it returns true or an array that does not describe a valid forest.

• gets 0 points otherwise.

For each test case in which a valid forest does not exist, your solution:

• gets full points if it returns false.

• gets 0 points otherwise.

numbering Page 25 of 31

Examples
stdin stdout

4
1 1 2 1

NO

10
1 1 1 2 3 3 2 1 1 1

YES
8
0 9
1 3
2 4
3 4
4 5
5 6
5 7
6 8

Explanation
In the first sample case, we want a valid forest with 4 nodes: 3 with degree 1 and 1 with degree 2.
We can show that this is not possible. Suppose such a forest exists, then there should be an edge with
number 2 out of the node with degree 2. This edge connects to another node that should have degree at
least 2. However, such a node does not exist, since all other nodes have degree 1.

In the second sample case, we want a valid forest with 10 nodes: 6 with degree 1, 2 with degree 2 and
2 with degree 3. Such a forest exists and the output is depicted below:

0 1 2

3 4 5 6

7 8

9

1 1 1

2 3 2

1 1

Notice that nodes 4 and 5 have three edges labeled 1, 2 and 3.
Furthermore nodes 3 and 6 have two edges labeled 1 and 2.
Finally nodes 0, 1, 2, 7, 8 and 9 have one edge labeled 1.

numbering Page 26 of 31

Solution
Let us say a forest (V, E) is beautiful if it admits at least one beautiful numbering, that is, if we can
define a mapping f : E → {1, . . . , |V | − 1} such that for all vertices v ∈ V , we have that the labels on the
edges with v as an endpoint are (1, . . . , dv), where dv is the degree of vertex v.

Take now a beautiful forest, with its beautiful numbering. Note that a node with degree d will have edges
with numbers 1, 2, . . . , d. This means that it will have an edge connecting it to a node of degree at least
d, another node of degree at least d − 1, and so on.

Let the largest degree in A be some number D and let us start with an empty slate, that is, the forest
with nodes 0, . . . , N − 1 and no edges. Before any of the “hard work", we can carry out two simple
checks on A to find some early diagnoses that no forest exists: calculate S = A0 + · · · + AN−1. Any
forest with degrees A will have S

2 edges, so we can already conclude that no forest exists if S is odd or
S
2 > N − 1. But this will not always be the case and we need to have stronger methods to find more
subtle inconsistencies.

We will start by adding in the edges with label D. Then, all nodes with degree D must be paired with
each other, since only nodes with degree D or higher (and since D is the maximum, no node will have
degree > D) will have outgoing edges labelled with a D. If after this pairing is done there is a node left
over, then we can conclude that no beautiful forest with degrees A exists.

Let us now include the edges with label D − 1. All nodes with degree D − 1 or D will have one outgoing
edge with this label, and we again have to find a way to pair them up, this time ensuring that no cycles
are created in the process. If there is no way to pair them up, we again conclude that this is impossible.

We decrement the label d on the edges we are adding to the forest, pairing up all nodes with degree
≥ d ensuring no cycles are created in the process, until we finish with d = 1, or reach a point where we
conclude that the construction is impossible.

But how can we ensure that the choices we make at each step do not generate false negatives in the
future? That is, we must pair nodes in each step maintaining the invariant that if a beautiful forest
existed in the previous step, then at least one beautiful forest exists after the current step.

We can do this by keeping track of the current connected components in the forest and making greedy
choices. As a preprocessing step, we iterate over A and store, for each value of d = 1, . . . , N − 1, the
indices of the nodes in A that have such a degree in an array nodesPerDegree.

We then iterate from d = N − 1 to d = 1 and find, for each connected component in the current
forest, which nodes have degree ≥ d. We can do so by, after each iteration, copying all nodes in
nodesPerDegree[d] to nodesPerDegree[d-1]. This way, at the start of each iteration,
nodesPerDegree[d] will already contain the nodes that we need.

We sort the connected components in descending order of the number of nodes with degree ≥ d that the
component contains. We now proceed to pair these nodes up with edges with label d. In order to do
so, we iterate over the list of connected components in this order. We keep at all times the index of the
last connected component we have seen and how many unpaired nodes it has. Initially, this number is
set to zero for both variables. We wish to maintain the invariant that for all connected components we
have already iterated over, either their degree-≥ d nodes have already been paired up, or the connected
component is the one we are keeping the index of (and hence the last visited). Whenever we reach a new
connected component, we first check if there are unpaired nodes in the last visited component.

If there are, we then add an edge between an unpaired node of the last component and an unpaired node
of the current component. This now means the two components have merged into one. We then update
the index of the last visited component and the number of unpaired nodes in it, which may now be zero,
and hence maintain the invariant after the iteration.

On the other hand, if all nodes with degree ≥ d in the last connected component have been paired up
already, then by the invariant we can conclude that all degree ≥ d nodes we have iterated over are now
paired up. We hence simply update the index of the last visited component and the number of unpaired

numbering Page 27 of 31

degree-≥ d nodes to those of the current connected component, and also maintain the invariant in this
case.

Once we have finished traversing the list of connected components, either all nodes of degree ≥ d have
been paired up, in which case we decrement d and continue; or the last component remains unpaired, in
which case we conclude no beautiful forest exists. It can be proven that this greedy algorithm is optimal.

It now remains to program it efficiently. For that, we can use the disjoint set union data structure to
keep track of current connected components and use small-to-large merging when merging two connected
components. With this I mean that when we merge two connected components, the tree of the one with
fewer unpaired nodes is hung under the root of the tree of the one with the most unpaired nodes, breaking
ties arbitrarily.

[Spoiler alert: the following page contains C++ code for a 100 points solution.]

numbering Page 28 of 31

Accepted Solution

1 #include <algorithm>
2 #include <iostream>
3 #include <variant>
4 #include <vector>
5 using namespace std;
6

7 struct dsu {
8 int N;
9 vector<int> par;

10 vector<vector<int>> unpairedPerSet;
11 dsu(int n) {
12 N = n;
13 par = vector<int>(N);
14 for (int i = 0; i < N; i++) {
15 par[i] = i;
16 }
17 unpairedPerSet = vector<vector<int>>(N);
18 }
19

20 int root(int x) {
21 if (par[x] == x)
22 return x;
23 return par[x] = root(par[x]);
24 }
25

26 void mergeTrees(int x, int y) {
27 int parX = root(x);
28 int parY = root(y);
29 if (parX == parY)
30 return;
31 if (unpairedPerSet[parX].size() < unpairedPerSet[parY].size()) {
32 swap(parX, parY);
33 }
34 par[parY] = parX;
35 // the only difference between this implementation of DSU and the canonical
36 // one is that we keep track of all the unpaired nodes in each set
37 for (int &node : unpairedPerSet[parY]) {
38 unpairedPerSet[parX].push_back(node);
39 }
40 }
41

42 void removeEdge(int node) { unpairedPerSet[root(node)].push_back(node); }
43

44 int unpairedInComponent(int node) {
45 return (int)unpairedPerSet[root(node)].size();
46 }
47

48 pair<int, int> mergeUnpaired(int node1, int node2) {
49 int root1 = root(node1);
50 int root2 = root(node2);
51 pair<int, int> edge =
52 make_pair(unpairedPerSet[root1].back(), unpairedPerSet[root2].back());

numbering Page 29 of 31

53 unpairedPerSet[root1].pop_back();
54 unpairedPerSet[root2].pop_back();
55 mergeTrees(root1, root2);
56 return edge;
57 }
58 };
59

60 bool checkValidNumEdges(int N, vector<int> &A) {
61 long long numEdges = 0;
62 for (int i = 0; i < N; i++) {
63 numEdges += A[i];
64 }
65

66 // the number of edges of any graph equals sum(degrees) / 2
67 // so sum(degrees) must be even
68 if (numEdges & 1) {
69 return false;
70 }
71

72 numEdges /= 2;
73 // numEdges now contains the real number of edges in any beautiful forest with
74 // degrees A
75 return numEdges <= N - 1;
76 }
77

78 variant<bool, vector<pair<int, int>>> find_numbering(int N, vector<int> A) {
79 if (!checkValidNumEdges(N, A)) {
80 return false;
81 }
82

83 dsu components = dsu(N);
84

85 vector<vector<int>> nodesPerDegree(N);
86 for (int i = 0; i < N; i++) {
87 // we know 0 <= A[i] <= N-1 from the constraints, so there is no need to
88 // check this
89 nodesPerDegree[A[i]].push_back(i);
90 }
91

92 vector<pair<int, int>> edges;
93

94 for (int degree = N - 1; degree >= 1; degree--) {
95 if (!nodesPerDegree.size())
96 continue;
97

98 // remove 1 edge from all nodes with current degree
99 // this leaves one unpaired endpoint per node, so we note that down for

100 // later
101 for (int &node : nodesPerDegree[degree]) {
102 nodesPerDegree[degree - 1].push_back(node);
103 components.removeEdge(node);
104 }
105

106 // for each set in the DSU, note how many unpaired nodes it contains

numbering Page 30 of 31

107 // and the root of the tree that represents the set
108 vector<pair<int, int>> toPair;
109 for (int &node : nodesPerDegree[degree]) {
110 if (components.root(node) == node &&
111 components.unpairedInComponent(node)) {
112 toPair.push_back(make_pair(components.unpairedInComponent(node), node));
113 }
114 }
115

116 // sort these values by descending order of how many unpaired nodes the set
117 // has
118 sort(toPair.rbegin(), toPair.rend());
119 int lastUnpairedInd = 0, leftUnpaired = 0;
120 for (auto [treeUnpaired, treeRoot] : toPair) {
121 if (leftUnpaired > 0) {
122 edges.push_back(components.mergeUnpaired(treeRoot, lastUnpairedInd));
123 }
124 lastUnpairedInd = components.root(treeRoot);
125 leftUnpaired = components.unpairedInComponent(lastUnpairedInd);
126 }
127 if (leftUnpaired) {
128 return false;
129 }
130 }
131 return edges;
132 }

numbering Page 31 of 31

	Plane Turbulences (turbulences)
	Political cost (cost)
	Shop Tour (tour)
	Numbering (numbering)

