
Inflation

EGOI 2023

Problem author: Pak Hei Chan.

The first task of Day 1 of EGOI 2023 is relatively straightforward, utilizing
commonly used techniques that are widely recognized. Hopefully, completing
this task will provide advantageous assistance for you in achieving your dream
of earning a medal in EGOI 2023.

Subtasks may not be ordered for ease of discussion.

1 The Problem

Given an array p1, p2, . . . , pN , support the following two types of operations
(there are Q operations in total):

• INFLATION x: Add pi by x, for all 1 ≤ i ≤ N .

• SET x y: For all i (1 ≤ i ≤ N) such that pi = x, set pi = y.

After each operation output the sum of the array.

2 Subtask 2: Small N and Q

Here, N,Q ≤ 100. To solve this subtask, one can simulate the process described
in the problem statement. Each of the two types of operations can be handled
in O(N) time, by going through the array and changing the values appropiately.
Therefore, the overall complexity is O(NQ).

Since N,Q, pi, x, y ≤ 100, C++ contestants do not have to worry about integer
overflow problems.

Expected score: 28.

1

3 Subtask 1: N = 1

In this subtask, a O(NQ) solution works as well. Here difference from subtask 2
is that contestants are not required to have knowledge about arrays. Also, C++
contestants have to be careful about integer overflow problems in this subtask
(and all future subtasks): one need to use 64-bit integers (long long) to solve
this subtask.

Expected score: 14 for just subtask 1, 28 + 14 = 42 for subtask 1 and 2.

4 Subtask 3: Only INFLATION

In this subtask there are only INFLATION events. Notice that an event of the
form INFLATION x adds the sum of the array by N ·x. Therefore, one can simply
compute the sum of the array at first, then for every event INFLATION x, add
the sum of the array by N ·x. There is no need to add each element of the array
by x, and compute the sum of the array again.

Overall complexity: O(N +Q).

Expected score: 19.

5 Subtask 4: Only SET

In this subtask there are only SET events. The key idea here is to try make our
computations constant time. Notice that the indices in the array do not matter,
what matters is the values.

Therefore, we will maintain a frequency array f1, f2, . . . , f106 , where fi counts
the number of items in the array p with value i.

Let the sum of the array before an operation be s. After a SET x y event, the
following happens:

• s := s+ fx · (y − x), update the sum of the array.

• fy := fy + fx, all indices that have value x now have value y instead.

• fx := 0, there are no more indices that have value x now.

There is a special case where x = y. In this case nothing happens. If one
simulates the above process it will not work. Careful handling is required to
pass this subtask.

Overall complexity: O(N + Q + C), where C = 106 is the maximum value in
the array.

Expected score: 23.

2

6 Full Task

To get the final 16 points, we merge the ideas of subtask 3 and subtask 4.

Consider maintaining a global tag that keeps track of the total value added to
each element of the array. Initially, global = 0.

That means, for each element, if its initial value is pi, its current value
must be equal to pi + global.

This idea is important for understanding the following parts of the solution.

From subtask 4, we will maintain two things:

• Sum of the array s, ignoring global updates.

• Frequency array f . However, here the values can exceed the range [1, 106].
Hence, we should use a unordered map (in C++) or dictionary (in Python).

For an INFLATION x operation:

• Add the global tag by x. There is no need to update s.

For an SET x y operation:

• We want to set all elements that have value x to have value y instead.

• For an element that currently has value x, its initial value must have been
x− global.

• These elements will then have a current value of y, which corresponds to
an initial value of y − global.

– Look back at the key idea above if it doesn’t make sense. If an
element has an initial value of y−global, its current value equals y,
which matches the objective of the operation.

• Based on the above two points, we subtract the inputs x and y by global.

• Perform the steps from subtask 4, if x ̸= y:

– s := s+ fx · (y − x)

– fy := fy + fx

– fx := 0

Finally, the output after each operation is s+N · global, since s does not take
into account of global updates.

Time complexity: O(N +Q), or O(N +Q log(N +Q)) if a map is used instead
of unordered map in C++.

Expected score: 28 + 14 + 19 + 23 + 16 = 100.

3

7 Hard Version

The originally proposed version of this problem was more difficult (but solvable).
For those who are interested, you may try thinking of the solution.

Given an array p1, p2, . . . , pN , support the following four types of operations/
queries (there are Q operations in total):

1. Given i, x, do pi := pi + x.

2. Given x, do pi := pi + x for all 1 ≤ i ≤ N . (INFLATION)

3. Given i, output pi.

4. Given x and y, for all i (1 ≤ i ≤ N) such that pi = x, set pi = y. (SET)

8 Solution to Hard Version

Consider grouping the initial array elements into equivalence classes, such that
in each equivalence class, all elements have equal value. The idea is to use four
maps/arrays:

1. Value → equivalence class

2. Equivalence class → value

3. Equivalence class → set of indices

4. Index in array → equivalence class

By maintaining these four maps/arrays for every type of operation, it can be
easily seen that all types of operations can be solved. The tricky part is in
the SET operations, the essential thing that has to be done is to merge two
equivalence classes. We can naively insert all elements from the smaller set to
the larger set, then clear the smaller set. This technique is known as small-
to-large merging, and it ensures the total number of insert operations is
O((N +Q) logN).

4

Padel Prize Pursuit

EGOI 2023

Problem authors: Pavle Martinović and Mladen Puzić

1 Two players – N = 2

For each medal we can determine who won more matches after that day and
thus receives this medal in the end. If we do this starting with the last match,
we can do this for all medals in O(M) so the total complexity is O(N +M).

2 Simulation – N,M ≤ 2000

We can simulate the process by going through matches and maintaining a list of
medals for each participant. For each pair of participant and medal we keep the
number of nights that that participant held that medal. Then for each medal,
we determine who held it the longest. Complexity: O((N +M)M).

3 The winner of the ith match participates in
the (i+ 1)th match for all i

For each medal, we need to determine the participant with the most wins.
Observe that as the winner always plays the next match, all medals will always
stay together. Like in Subtask 1, we can now go through the days starting at the
last day, maintaining the number of wins and keeping track of which participant
has the most wins. Complexity: O(N +M).

4 At every match, the winner has at least as
many medals as the loser

From the fact that the match is always won by the participant with the larger
amount of medals at the moment, we can deduce that each medal will switch
hands at most O(logM) times, as if we look at a fixed medal, the number of
medals the person who holds this medal has doubles for each change of hands.
Thus, we can simulate the process, but this time, in contrast to Subtask 2, we

1

can not keep days held for each medal and participant. However, there will be
at most O(logM) medal holders per medal, so we can just remember all of them
and find who held it the most nights in the end. Complexity: O(M logM +N).

5 Once a participant loses, they are never in a
match again

Construct a tree where each match is a node. The parent of node x is the next
match where the winner of match x appears. Add a fake root, so we turn the
forest into a tree. The lifetime of each medal is a path from its first match to
the root. All matches of a participant are consecutive on the path from the
match where she first appeared to the root. This means that we can do DFS on
the tree, starting from the root, and maintain who held each medal the longest
from the root to the current node and also the current medal holder. Complexity
O(N +M).

6 Full Score

Construct the same tree as in the Subtask 5. Participants’ matches are no
longer a single path in the tree. Instead of keeping just the current and the
longest medal holder, we need to keep the count for every participant and also
maintain the longest medal holder. This can be done by keeping track of how
many medals on a path a participant has one and reversing the changes when
going up in the DFS tree. Complexity O(N +M).

2

Find the Box

EGOI 2023

Problem author: Nils Gustafsson.

The Problem

There is an H ×W grid. In some unknown cell there is a box. Your goal is to
find the box.

Every night, a robot starts in the top left corner, and moves around the grid.
You can decide how the robot should move by giving it instructions in the form
of a string consisting of characters <, >, ^, v.

The walls are solid, so if the robot attempts to move outside of the grid, nothing
will happen. The box is also solid, so you cannot move into the cell containing
the box.

At the end of each night, the robot will report to you its location, and go back
to the top left corner. Your task is to find the location of the box in at most Q
nights. In particular, you get full score if Q ≤ 2.

Solution 1: Q = 50 (20 points)

Notice that if the robot is on (r, 0), and the box is on (r, c), where c > 0, you
may instruct the robot to keep going right and it will eventually get stuck on
(r, c− 1).

On the other hand, if the box is not on row r, the robot reaches (r,W − 1).

Therefore, you can brute force each row. For row r, move r times downwards,
then move W − 1 times rightwards and see if the box is stuck.

But be careful of the special case when the box is in column 0.

When H = 50, this solution uses H = 50 queries, which scores 20 points.

1

Solution 2: Q = 3 (82 points)

Using a similar idea to the previous solution, if we know which column the
box is in, we can easily find its exact position by instructing the robot to go
to the correct column, then moving down many times such that it gets stuck
eventually.

Therefore, we may consider focusing on finding the correct column of the box
using 2 queries, then using 1 final query to find the position of the box. That
adds up to 3 queries. Now, the question is how we can do it.

When encountering similar types of grid interactive problems, some common
strategies contestants may consider include constructing some well-defined pat-
terns (like spirals), or dividing the grid into parts, considering parities, random-
ized methods, etc. In fact, the first two methods are helpful with solving this
task using Q = 3 queries!

Let’s consider the following pattern: moving back and forth along each row
(like in the figure below). When the robot encounters the box, we know that it
gets stuck. As a result, the robot will be displaced to the left, revealing which
column the box is in.

While this method seems promising, there is a small issue: the robot will run
into the left wall and the information about the column will be lost. So instead,
let’s divide the grid into two halves and run this solution on both halves! The
first query will look like this:

When the robot enters the second half of the grid, let’s say it moves x units
back and forth along each row. If the robot finally lands on (H − 1, c) then it

2

must have got stuck somewhere at column c+x, so the box would be at column
c+ x+ 1.

Of course, the above solution assumes that the box is in the right half of the
grid. If the box had been in the left half, we would need one more similar query
to find the correct column:

There are also some special cases, like if the box is in the first row. But if you
are careful enough, this will let you solve the problem in only three queries.

Solution 3: Q = 2 (100 points)

To get the number of queries down to 2, we will modify the Q = 3 solution.

The main idea is that we do not always need the final query to get the position
given the correct column. Sometimes we can incorporate that into the query
that finds the column.

Let’s start by making the same first query as in the Q = 3 solution. If the box
was in the right half of the grid, we would find the column of the box using one
query and find the row as well using another query. This takes 2 queries, so
there is no issue.

The issue arises when the box was in the left half, we need to find it in only one
more query. This is a bit tricky to do, and it is convenient to divide it up in two
cases depending on whether W is even or odd. For even W , we can do this:

3

In other words, we find the column similar to how it was done in the previous
solution, and then we also move back to the column and get the position of the
box. This is possible thanks to the fact that we know that the box is not in the
right half, so we can move freely there.

When W is odd, then this second query can look like this instead. Note that
there are some special cases to be handled, such as when the box is in the middle
column.

With careful handling, one may solve the problem using Q = 2 queries, which
scores 100 points.

Aftermath

There are also many other ways to get full score on this problem. If you ask
someone who solved it, then you will quite likely hear something different.

Can you prove that it is not possible to solve the problem with Q = 1?

4

Bikes vs Cars

EGOI 2023

Problem author: Nils Gustafsson.

Solution:

We can start by writing down what the numbers Ci,j and Bi,j mean in a more
concise way:

Ci,j = max
p

(min
b

(W − b))

Bi,j = max
p

(min
b

(b))

Here, the max is taken over all paths from i to j, and the min is over all bike
lane widths of edges on the path.

Note that if we let Ai,j = W−Ci,j , then we get rid of the parameter W , because

Ai,j = min
p

(max
b

(b))

So now we only focus on the bike lane width, and our goal is to construct a graph
that satisfies all the minmax- and maxmin-constraints imposed by the numbers
Ai,j and Bi,j .

Subtask 1 and 2:

Here it is helpful to make the following observation:

Observation 1: The minimum edge weight in the graph is min(Ai,j), and the
maximum edge weight is max(Bi,j).

In this subtask, this implies that if Bi,j < Ai,j , then it is impossible.

Otherwise, we can add edges of weight Ai,j and Bi,j that connect all pairs of
vertices.

1

Subtask 3 (N ≤ 40)

To solve the case when N is small, we need to find a construction that always
works, but uses too many edges.

Observation 2: If there is a valid solution, then the following construction will
also work: disregard all pairs of vertices where Ai,j > Bi,j . For all other pairs
of vertices, add edges of weight Ai,j and Bi,j .

Here is some motivation why this works:

First, if we have an edge between i and j of weight b, then Ai,j ≤ b and
Bi,j ≥ b, which means that Ai,j ≤ Bi,j . So we can never have an edge between
two vertices if Ai,j > Bi,j . This means that if a graph constructed as above is
disconnected, then there is no solution.

Second, a path in the construction that minimizes the maximum weight between
i and j will only use edges Ax,y that we added, since they are always smaller
than the Bx,y-edges. But it could happen that the minimum maximum weight
ends up smaller than Ai,j , if there is a path i, a1, a2, . . . , j such that

max(Ai,a1
, Aa1,a2

, . . .) < Ai,j

However, if such a path existed, then it could also be used in any other con-
struction, so in this case the answer should be NO anyway.

Third, similar arguments can be made about the Bi,j-edges.

So all we have to do to get this subtask is to construct the graph above, and
check that it is a valid solution. This check can be done by running an algorithm
similar to Floyd-Warshall’s, or by using minimum spanning trees.

Subtask 5 (all Bi,j are the same)

Let B be the value of all Bi,j . Remember from subtask 1 that the maximum
weight in the graph is the maximum value of Bi,j , which is B. So in this subtask,
we must have that B ≥ max(Ai,j), otherwise there is no solution. But if this
is the case, then we can connect all vertices with edges of weight B and then
forget about the maxmin constraints.

After that, we only have to focus on the numbers Ai,j .

Observation 3: If we have a graph that satisfies all Ai,j-constraints, then the
minimum spanning tree of that graph will still satisfy all the Ai,j-constraints.

This fact is a rather standard trick when it comes to minimum spanning trees.
To see why it is true, assume that there exists a path from i to j such that the
maximum weight is smaller than the maximum weight of the path along the
minimum spanning tree. Then we could remove the largest weight edge on the

2

path along the tree, and replace it with an edge of smaller weight. This would
create a smaller spanning tree, which is a contradiction.

So, to solve the subtask, find a minimum spanning tree of the complete graph
whose edge weights are Ai,j , and check that it is a valid solution. There are
several algorithms to efficiently find a minimum spanning tree, like Prim’s or
Kruskal’s.

Full score

To get full score, we will put together the things we learned in the previous
subtasks.

First, take the construction from Subtask 3. Like we saw in Subtask 5, we can
take a minimum spanning tree of this graph, and it will still satisfy the minmax-
constraints. Similarly, we can take the maximum spanning tree to satisfy the
maxmin-constraints. Furthermore, if we take the union of these two trees, then
we get a solution, if one exists.

To see why this works, note that the minimum spanning tree will only use the
Ai,j-edges added in Subtask 3, and the maximum spanning tree will only use the
Bi,j-edges. Also, a path between i and j that minimizes the maximum weight
will only use the edges from the MST, like we saw in Subtask 5, and this value
is exactly Ai,j like we want (and similarly for Bi,j).

Summary of how to get 100 points: Create a graph with edges of weight Ai,j

and Bi,j between every pair of vertices such that Ai,j ≤ Bi,j , take the union of
the minimum and maximum spanning tree, and finally check that this is a valid
solution.

3

Carnival Generals

EGOI 2023

Problem author: Nils Gustafsson.

The first task of Day 2 of EGOI 2023 utilizes a relatively simple idea, with
approachable partial scores as well. Depending on the contestant, some subtasks
may or may not be useful for thinking of the full solution.

Subtasks may not be ordered for ease of discussion.

1 The Problem

There are N generals numbered 0, 1, . . . , N − 1 which you want to arrange in a
row. The j-th general ranks all generals i such that i < j, and it is forbidden
for two generals i and j (i < j) to stand next to each other in the row if general
i is strictly in the second half of general j’s ranking.

Construct a way to arrange the N generals in a row such that the restrictions
are satisfied. It is guaranteed that there is a solution.

2 Subtask 3: N ≤ 8

In general, if one doesn’t have the idea for the full solution, it is always nice to
start with brute force.

It is easy to see that there are N ! = 1× 2× . . .×N ways to order the generals.
When N ≤ 8, N ! ≤ 40320. Therefore one can simply brute force all the possible
orders and do checking. This brute force can be implemented recursively, or by
iterating through all permutations (for example by using next_permutation in
C++).

Note that when we say general i and general j cannot stand next to each other,
that means general i cannot be directly to the left of general j, and vice versa.

Expected score: 29.

1

3 Subtask 1: pi,j = i− j − 1

Maybe we can start with some smaller N and work our way to larger N . Let’s
just run the brute force written in subtask 3.

Let’s say the brute force returns the lexicographically smallest solution. Then,
for different N you should get the following constructions:

• N = 2: 0 1

• N = 3: 0 1 2

• N = 4: 0 1 2 3

• N = 5: 0 1 2 3 4

It seems that the solution to a certain N is 0, 1, . . . , N − 1. It is easy to see why
it works, as pi,0 = i− 1 and hence generals i− 1 and i can always stand next to
each other.

Expected score: 11.

4 Subtask 2: pi,j = j

Let’s use the brute force again.

• N = 2: 0 1

• N = 3: 1 0 2

• N = 4: 1 3 0 2

• N = 5: 2 0 3 1 4

• N = 6: 2 5 0 3 1 4

• N = 7: 3 0 4 1 5 2 6

• N = 8: 3 7 0 4 1 5 2 6

It seems that the solution to odd N is:

• Arrange generals N−1
2 , N−1

2 + 1, . . . , N − 1 in that order

• Put general 0, 1, . . . , N−3
2 in between each pair of adjacent generals

The difference of the numbers of adjacent generals are either N−1
2 or N−1

2 + 1.
Since pi,j = j, each general favors generals with smaller numbers. Hence it is
easy to see that a difference of N−1

2 or N−1
2 +1 does not violate the constraints.

For even N , simply add general N − 1 in between the first two generals, which
are general N

2 − 1 and general 0 respectively. It is also easy to see that adding
general N − 1 this way does not violate the constraints.

Expected score: 23, or 34 if both subtasks 1 and 2 are attempted.

2

5 Full Task

5.1 Induction

We can think of the construction in Subtask 1 in another way: start with the
construction for N = K and add general K somewhere in the row to find the
correct construction for N = K + 1. This induction-like technique turns out to
be useful in solving the full task.

5.2 Proving the Existence of a Solution

Note that if there is a way to insert general K in a row containing generals
0, 1, . . . ,K − 1 currently (regardless of how they are arranged), and there is a
construction for N = 2, then there is a construction for all valid inputs. This
is because one can get the construction for N = K + 1 easily from N = K, by
adding general K into the current row.

Now, how many ways are there to insert general K? Since there are K generals
in the row currently, there must be K +1 ways that general K can be inserted.
Additionally,

⌈
K
2

⌉
of the existing generals can be placed next to general K,

while the rest cannot. Let’s call the generals that can be placed next to general
K ”good” generals, and the rest ”bad” generals.

We want to find one of the following:

• A pair of adjacent generals such that both of them are good (condition 1)

• Either the first or the last general that is good (condition 2)

Now, assume the contrary that neither of these two conditions are true. Then,
the first and last generals are bad, and between every pair of good generals there
is at least one bad general. There are

⌈
K
2

⌉
good generals, so we need at least⌈

K
2

⌉
+ 1 bad generals for this to occur. But we also know that the number of

bad generals equals
⌊
K
2

⌋
, and

⌈
K
2

⌉
+ 1 ̸=

⌊
K
2

⌋
.

We found a contradiction, hence the assumption that ”neither of the two con-
ditions are true” is false. Therefore, at least one of the conditions are true, and
that means we can always find a way to insert general K.

5.3 Constructing the Solution

Start with 2 generals, then add each new general by exhausting each possible
position the new general can be in.

The time complexity is O(N2).

Expected score: 11 + 23 + 29 + 37 = 100.

3

6 Aftermath

Here are some questions you may think about after attempting this task, if you
are interested:

• If we instead give K constraints in the form (a, b), such that a and b

cannot stand next to each other, where 0 ≤ K ≤ N(N−1)
2 , is the general

problem solvable in polynomial time? Alternatively, can you reduce it to
a standard NP-complete problem?

• What if we impose additional constraints on the arrangement of the gen-
erals, such as requiring that certain pairs of generals must stand next to
each other or that certain generals must be placed in specific positions?

4

Candy

EGOI 2023

Problem author: Yann Viegas.

1 The Problem

You are given an array a1, a2, . . . , aN and two integers F and T . In a single
operation, you are allowed to swap any two adjacent elements of the array.
Find the minimum number of operations required so that the first F elements
of the array sum to at least T .

2 Subtask 1: N ≤ 2, ai ≤ 100, T ≤ 109

Here, N can only take two values: either 1 or 2.

• Case N = 1: We cannot apply any operation and as 1 ≤ F ≤ N we know
that F = 1. Thus it is enough to check whether or not a1 ≥ T

• Case N = 2: We can either swap the two numbers, or not swap them.
We can just consider the two cases and see if one of them gives a correct
solution.

Overall complexity: O(1)

Expected score: 6.

3 Subtask 2: ai ≤ 1

In this subtask, ai is either 0 or 1 for all i. First we will try to find if we can
reach the objective without minimising the number of swaps. Let’s say there
are X ones in the array. The largest possible sum would be achieved by moving
all the ones at the beginning of the array. The sum of the first F elements of
the array will then be s = min(F,X). If s < T , the answer is NO. Else, we can
construct an answer by reaching a state where there are at least T ones at the
beginning of the array. It is optimal to chose ones in increasing order of their
indices in the array.

Expected score: 19 for just subtask 2, 6 + 19 = 25 for subtasks 1 and 2.

1

4 Subtask 3: N ≤ 20

In this subtask, N ≤ 20 which suggests some sort of backtracking/bitmask
solution.

We can split the array in two parts:

• the left part (first F elements)

• the right part (everything except the first F elements)

Fixing the set of the elements that will end in the left part will be enough. Let’s
say that their indexes (in the original state of the array) are:

l0 < l1 < . . . < lF−1

The minimum required number of swaps to move them to the left part is:

(l0 − 0) + (l1 − 1) + . . . (lF−1 − (F − 1))

Indeed, it is never useful to swap li and lj when i < j. Furthermore, as l0 has
to end up in the first position, it needs to be swapped with all the elements to
its left, same argument for l1 which need to be swapped with all the elements
with indexes in [1 . . l1[etc. Thus, all these swaps are necessary. This amount
of swaps is sufficient (applying them is enough to move l0, l1, . . . , lF−1 to the
left part.

One way of implementing this would be by iterating over bitmasks to iterate
through all the subsets of [0 . . (N − 1)]
Overall complexity: O(2N ·N).

Expected score: 6 + 16 = 22 (it solves subtasks 1 and 3).

5 Subtask 4: ai ≤ 100

The constraints of the problem suggest that we use DP. Also, the solution of
subtask 3 presents clearly a process of “chosing/not chosing” elements which is
definitely something that could be solved with DP.

The states are:

• The index of the integer we are currently considering

• How many elements we already selected to be in the left part

• The sum of the elements currently in the left part

So dp[i][j][s] will give the minimum number of swaps required to select the first
j integers of the left part while having only used the first i integers and such
that their sum is exactly s.

The transitions are pretty simple:

• Either we choose the ith integer to be in the left part

2

• Or we don’t choose it to be in the left part

We use the formula of subtask 3 to update the number of swaps while doing our
transitions.

Overall complexity: O(N2 · max(ai)
0≤i≤N−1

)

Expected score: 6 + 19 + 30 = 55.

6 Full Task

Let’s try to optimise the DP solution we got for the previous subtask. The
thing that makes it slow is that the sum of the integers of the left part can be
extremely high. On the other hand, the value that our DP computes is small.
Indeed, by the formula we found in subtask 3, the number of swaps required to
move all the selected integers to the left part is bounded by N2. Thus we can
change a bit our states:

• The index of the integer we are currently considering

• How many elements we already selected to be in the left part

• The minimum number of swaps required to move the selected elements to
the first part

Given such a state, we would like to maximise the sum of the integers selected
to be in the left part. Thus, dp[i][j][s] will give the maximal sum we can reach
by selecting the first j integers of the left part while having only used the first
i integers and such that the minimum number of swaps required to move them
to the left part is exactly s.

Overall complexity: O(N4)

Expected score: 100

3

Sopsug

EGOI 2023

Problem author: Jakub Tarnawski.

1 The Problem

You are given a graph with N nodes, M good directed edges and K bad (for-
bidden) directed edges. Build a directed tree with any root, such that all edges
are directed towards the root, all good edges are used, and none of the bad
(forbidden) edges are used.

We denote by (u, v) an edge that is directed from u to v.

2 Subtask 1: M = 0, K = 1

This is an ad-hoc subtask; its solution is not particularly instructive for the full
solution.

There aren’t any edges that you must use, and there is exactly one bad edge
that you can’t use. Consider the following two trees, both of which are directed
chains:

• A tree such that all edges are (i, i+ 1). (Think about “going right” if all
nodes are placed on a line.)

• A tree such that all edges are (i+ 1, i). (“Going left”.)

At least one of the trees does not contain the bad edge. You can just figure out
which one, and output it.

3 Subtask 2: M = 0, K = 2

This is an ad-hoc subtask; its solution is not particularly instructive for the full
solution.

Similar to Subtask 1, you may consider finding a directed chain such that the
edges in the directed chain do not contain the bad edges. An easy way to
achieve this without much thinking is to generate some random chains, then

1

check whether the generated chain works. Since the number of bad edges is
small, after a few iterations there will be a chain that satisfies the conditions.

There is a special case: when N = 2, there is no solution.

Another solution is to find a node that has no incoming bad edge; since K = 2,
if N ≥ 3 there must be such a node. Then connect all other nodes directly to
that node.

4 Subtask 3: K = 0

There are no bad edges, so one simply needs to construct a directed tree that
uses all the good edges.

If the good edges form a directed forest, then it is possible. Otherwise, it is
impossible. The exact conditions for the edges to form a directed forest are:

• Each node should have out-degree at most 1.

• There should be no cycles.

One can check acyclicity using a graph traversal method such as DFS. Alter-
natively, one can use a Union-Find data structure; whenever processing a new
edge (u, v), first check if u and v are not already in the same component (in
which case this is not a directed forest).

If the answer is “possible”, simply pick one of the trees in the forest and connect
the remaining trees’ roots to any node in that tree.

5 Subtask 4: N ≤ 100

We begin from the solution to Subtask 3. First, note that the good edges must
still form a directed forest for there to be a solution. Next, we look at the
resulting forest (where some trees are perhaps just single nodes). It is not hard
to see that any final solution must have the following shape: we must choose
one of the trees in the forest as the “root”, and then connect each other tree in
the forest to the “root” tree (perhaps indirectly). Note that any new edge will
need to go from the root of a tree to any node of another tree.

We will try every possible tree as the “root” tree. So let us fix a “root” tree.
We perform a DFS starting from the root of the “root” tree. Note that edges
have to be reversed in order to be able to traverse the tree. When we visit a
node, we try to connect any of the roots of trees that aren’t connected yet. This
means checking if the appropriate edge is not forbidden. If we succeed, great;
we should then also proceed with the DFS from the newly-connected tree root.
If we do not succeed, then we have seen a forbidden edge.

What is the time complexity of this, for a fixed “root” tree? Note that we
traverse tree edges at most N −1 times (each traversal corresponds either to an

2

existing forest edge, or to a new edge with which we “succeed” in connecting a
new tree root). Moreover, we make at most K attempts to connect a new tree
root that do not ”succeed” because the considered edge was forbidden. Each
operation should be dominated by the cost of checking if an edge is forbidden,
which should be at most O(logN).1 Therefore we have O((N +K) logN) total,
per “root” tree.

Finally, checking every possible “root” tree contributes another N factor, which
is good enough for this subtask.

As we actually have N ≤ 100 here, one can even afford to explicitly construct
the entire ”complement” graph consisting of non-forbidden edges (of which there
are at most N2 −K) and run DFS on it appropriately. The time complexity of
such an approach would be O(N3).

6 Subtask 5: Exists solution with 0 as root

As we only need to check one “root”, we do not incur the extra N runtime factor,
so the solution from Subtask 4 is fast enough even for N = 300 000. (However,
explicitly constructing the complement graph would no longer be possible, and
one has to be somewhat careful not to run into some quadratic-time behavior.)

7 Full task

We need to speed up the solution from Subtask 4. What is a good “root”,
actually? It might be easiest to first think of the case where there are no
good edges (M = 0). Then, a good “root” is a node from which every node
is reachable in the complement graph (i.e., the complete graph from which all
forbidden edges have been removed, and then all remaining edges were reversed).
Suppose we run DFS from node v0 := 0; once it’s done, check if every node was
visited. If yes, then 0 was a good root. Otherwise, run another DFS from
some yet-unvisited node v1, without resetting the ”visited” status of any nodes.
Continue doing this: in each iteration, if not all nodes have been visited, run
another DFS from some yet-unvisited node, and so on. Eventually we will have
visited all nodes. Let us pay special attention to the last node vk from which
we ran DFS.

Is vk a good root? Well, perhaps not – it might, for example, be an isolated
node. However, surely every node that was visited in previous DFS iterations
(before we started from vk) was not a good root, as vk was not visited in these
iterations. On the other hand, all the other nodes – those first visited in the last
DFS iteration – are reachable from vk. Therefore, either vk is a good root, or
there is no solution. To check whether vk is a good root, we reset the ”visited”
status of every node, and run one last DFS from vk (building the directed tree
if possible).

1This can be brought down to O(1), e.g. using a hash-set, such as unordered set in C++.

3

This solution idea can be seen as being inspired by Kosaraju’s algorithm for
finding strongly connected components of a directed graph (the one where we
run a DFS, and then another DFS on the graph with reversed edges).

Now, when M > 0, for the proof of correctness one can think of contracting
every tree in the forest (compressing it into one node) while handling the edges
appropriately. For the implementation, we just run the solution from Subtask
5, but then proceed with further DFS runs if not all nodes were visited from 0,
as above.

The time complexity analysis goes through just as for Subtasks 4–5.

Subtask 6 (M = 0) is used as a safety net for the contestants who had the idea
for the full solution, but implemented something wrongly for the good edges,
e.g. checking acyclicity.

4

Guessing Game

EGOI 2023

Problem author: Edward Xiao.

Solution 1: K = N − 1 (10 points)

On the first N − 1 houses, Anna draws the numbers 1, 2, . . . , N − 1 in order
of visiting. The number Emma draws must also be one of 1, 2, . . . , N − 1, and
result in a duplicate value, and it will be the only duplicate value since all the
other values are unique. Thus, we find the pair of houses that contains this
duplicate value and guess those two houses.

Solution 2: K = N/2 (30 points)

Split the houses into two halves. For each half, we perform the same strategy as
above. If either half contains a duplicate, we guess those. Otherwise, we guess
the largest number in each half, since these were the last ones to be picked.

Solution 3: K = ⌈N/3⌉+ 1 (36 points)

Note that we can actually improve on the strategy above by splitting the houses
into thirds. For each third, repeat the strategy from K = N − 1 for all numbers
except the last. For the last houses of the blocks, we pick two values x and y.
Then, the strategy is simple again: if there are duplicates of x or y, guess those
and return. Otherwise, there must be duplicates of the smaller values in one of
the thirds, so we will guess those.

Solution 4: K = ⌈
√
N − 1⌉+ ⌊

√
N − 1⌋ (60 points)

We can generalize the previous solution even further by splitting the houses into
⌊
√
N⌋ blocks and picking a set X of ⌈

√
N − 1⌉ numbers for each number that

is not the last in its block. For the last number in each of the ⌊
√
N⌋ blocks, we

assign them a different set Y of ⌊
√
N − 1⌋ numbers. If there is a duplicate of

an element in Y , we guess those. Otherwise, there must be a duplicate of an
element in X in one of the blocks, so we guess those instead.

1

Solution 5: K = ⌈log2N⌉ (90 points)

For 90 points, we will use divide and conquer to split the houses into multiple
layers of blocks instead of just one layer. Consider a segment tree layout over
the houses. For each index, we say it “completes” a segment in the segment
tree if it is the last index in that segment to be assigned a value. In each round,
Anna picks v = the lowest depth of any segment that i completes. For Bertil,
consider the values written on the doors assuming Anna picks the last value
according to their strategy. In this case, Bertil can just find 1 and return its
index. However, if there is no 1 in the array, then there are two cases:

1. The 1 was replaced by a 2. Then there are exactly two houses with 2s
written on them, and we know that one of them must be Anna’s, since
there should only be one 2 if the strategy was followed for all indices. This
is because the index that was picked later not only completes the segment
on layer 2, but also necessarily completes the segment on layer 1 since the
other half is already completed.

2. The 1 was replaced by a value greater than 2. Then, locate the half that
contains the only 2 in the array. We know Anna’s house must not be in
this half, since it was completed first. Thus, we may recursively solve the
problem on the other half, completing the solution.

Note that since 1 is never actually picked by Anna, we can subtract 1 from all
values Anna picks to ensure we have exactly K = ⌈log2 N⌉.

For illustrative purposes, consider an example where N = 8, Emma’s house
has index 2, and Emma and Anna visit the houses in the following order:
[0, 5, 4, 1, 6, 3, 7]. Then, after Emma writes a number X on her own house,
the array A will be [3, 2, X, 3, 2, 3, 3, 1]. We run through Bertil’s strategy in the
3 possible scenarios:

1. X = 1: since there are duplicate 1s, it is clear that one of these must be
for Emma’s house. Guess 2, 7 and return.

2. X = 2: since there is a unique 1, Emma’s house must be in the half of the
array that does not contain 1. Now we get to A[0, 3] = [3, 2, 2, 3]. Repeat
our logic recursively. Since there are duplicate 2s, it is clear that one of
these must be for Emma’s house. Guess 1, 2 and return.

3. X = 3: since there is a unique 1, Anna’s house must be in the half that
does not contain 1. Now we get to A[0, 3] = [3, 2, 3, 3]. Since there is a
unique 2, Anna’s house must be in the half of the array that does not
contain 2. Now we get to A[2, 3] = [3, 3]. Since there are duplicate 3s, it is
clear that one of these must be for Anna’s house. Guess 2, 3 and return.

2

Solution 6:
K = O(log logN) or K = O(2log

∗ n) (100 points)

To solve the problem fully, we consider the following two-phase approach:

In the first phase Anna just writes the number K on the first N − Θ(log(n))
houses which are visited. In the second phase (which we describe later), we
promise that Anna will not write the number K on the remaining Θ(log(n))
houses.

Now we need to handle two cases:

• If Emma does not write the number K on her house, then we know it is
one of the Θ(log(n)) houses not with a K.

• If Emma writes the number K, then we need to figure out which of the
N −Θ(log(n)) houses with K written on it belongs to Emma.

In the former case, we have essentially reduced the problem to an instance with
N ′ = Θ(log(n)), but now with numbers 1, . . . ,K − 1.

For the latter case, we make the following observation: If we known the sum S
of indices, modulo N , of the Θ(log n) houses not part of the first phase, then
we can figure out Emma’s house in case she writes K. Indeed, we can identify
that we are in the second case by counting the number of houses with K written
on them. Then, we know that Emma’s house index plus all indices of houses
without a K, must equal S. Hence we can solve for Emma’s house index.

The strategy for the second phase is now the following: we want to essentially
solve an instance where N ′ = Θ(logN) while simultaneously encoding the sum
S (which is known at the start of the second phase).

One has to be a bit careful on how to encode the sum S, in the remaining
N ′ = Θ(log n) houses, since one of these houses we do not have control over and
Emma can write K on it instead. One way of doing it is to write S (modulo
N) in binary and then duplicate each bit, to make sure that we can recover the
sum S even after one bit (the one corresponding to Emma’s house) is dropped.

Solving the instance on N ′ = Θ(log(N)) in our strategy can be done in multiple
ways:

• Using Solution 1 (K = N ′ − 1) for the recursive part, which will end up
in ≈ 76 points with K = Θ(log n).

• Recursively using our two-phase strategy here, which will result in ≈ 96
points and K = Θ(2log

∗ N).

• Using Solution 5 (K = ⌈log2 N ′⌉), which happens to be quite good with
small N . If implemented carefully this will obtain the full 100 points using
K = 7 = O(log log n), see below for details.

3

Detailed optimization tricks for 100 points:

• Use K = 7 and N − 32 numbers for the first phase (so N ′ = 32).

• In the second phase we run Solution 5 with N ′ = 32, which will use
numbers 1, . . . , 5.

• Instead of encoding the sum S modulo N , we use the fact that we have two
guesses and encode it modulo N/2. This requires 16 bits of information,
since 216 = 65536 > N/2.

• Note that Anna will write exactly 16 “5”s in the second phase (see Solution
5 for more details). Hence we can change some of these “5”s to “6”s to
encode the sum S.

• All in all, the solution becomes quite succinct: the jury’s 100pt solution
is just 40 lines of python code!

Harder Version: K = O(1)

It is possible to solve the problem with K being constant (that is not growing
when N grows). The jury is aware of a solution using K = 5 no matter how
large N is. We leave finding a solution with constant K (or even as low as
K = 5) as a difficult bonus challenge.

The jury can also prove that using K = 3 is impossible (even for small N); so
what about K = 4, is it possible or impossible?

How does the grader work?

The grader for guessinggame is a bit complex. It might run Anna’s part twice
to try to predict what would be a confusing number for Emma to write on her
house.

In the grader, the order of houses is fixed per testcase, but the value Emma
writes on her own house is chosen adaptively. The second line of each .in file
explains how the value gets chosen for that test case:

• random: the last line of the input file contains a number X. The value is
chosen as X

• interact: same as random, except that the judging is performed interac-
tively, instead of non-interactively for performance. This is an implemen-
tation detail which should not matter. See includes/ for more details if
curious.

• copy: the last line of the input file contains a number X. The value is
copied from house with index X.

4

• fork: the last line of the input file contains a number X. Phase 1 of the
submission is run as a trial run with Emma’s house placed at (0-based)
position X of the house visit order, and the house that was originally at
position X removed. Let the number that Anna writes on that house be
Y. Then in the real run of phase 1, Emma writes the number Y on her
house.

That is Emma, essentially asks Anna ”if we had visited my house at time
X, what number would you have written on it?”.

The grading is performed by adding a file that gets compiled/run together with
the submission and uses the fork() function to make it run multiple times.

5

